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Multi-layered diffusive convection.
Part 2. Dynamics of layer evolution
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Evolution of layers in an unbounded diffusively stratified two-component fluid and
its dynamics are studied by means of a direct numerical simulation (DNS) and an
analytical model. The numerical simulation shows that the layers grow by repeating
mergings with the neighbouring layers. By analysing the results of the numerical
simulation, the mechanism of the merging is examined in detail. Two modes of
merging are found to exist: one is the layer vanishing mode and the other is the
interface vanishing mode. The vanishings of layers and interfaces are caused by
turbulent entrainment at the interfaces. Based on the analysis of the numerical model,
a one-dimensional asymmetric entrainment model is proposed. In the model, each
layer is assumed to interact with its neighbouring layers through simplified convective
entrainment laws. The model is applied to two simple configurations of layers and is
proved to reproduce the layer evolutions found in the DNS successfully.

1. Introduction
Diffusive regimes of double-diffusive convection are found in many natural and

engineering fluids such as high-latitude oceans (Schmitt 1994), magma chambers
(Huppert & Turner 1981) and liquefied gas storage (Zimmerman & Rees 2007). The
most striking characteristics of the diffusive convection is to produce layers. It is
reported that, once layers are formed, they do not remain steady but evolve with
time, both from the laboratory experiments (Shirtcliffe 1969; Linden 1976; Linden &
Shirtcliffe 1978) and from observations in the oceans (Neshyba, Neal & Denner 1971).
For example, mergings of layer are often observed during their evolutions. However,
the dynamics and mechanism of the layer evolutions have not been clarified in a
satisfactory manner.

There are several oceanic observations that suggest ‘layer splitting’ events at the
interface (e.g. Neshyba et al. 1971). However, such one-dimensional observations are
unable to distinguish the true ‘layer splitting’ from a horizontal advection of a layer
patch. If such a splitting process would exist and be active in the oceans, the thickness
of the layer is expected to reach an statistical equilibrium value at which the merging
and the splitting balance. Thus, whether any layer splitting occurs against layer
merging has been of interest (Kelley et al. 2003). Stamp et al. (1998) speculated that
a solitary wave propagating along the diffusive interface may be responsible for such
an apparent ‘splitting’.
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Part 1 of the present paper (Noguchi & Niino 2010), studied diffusive convection
in an unbounded diffusively stratified two-component fluid by a DNS and found
formation of layers. Each layer consists of a convective mixed layer, which is
sandwiched by diffusive interfaces with a sharp density gradient. As time elapses, each
layer merges with its adjacent layers repeatedly, and the layer thickness increases on
average. Now, important questions on the dynamical aspect of layers are (i) how
layers merge, (ii) what controls the merging process and (iii) whether the merging is
inevitable or not.

Dynamics of a layer growth have been studied by a mathematical model that
represent evolutions of layer thickness and components based on empirical flux laws.
Huppert & Linden (1979) studied a problem of stratified fluid heated from bottom
and proposed a model that can simulate layer productions and mergings. They found
a reasonable agreement between the predicted layer evolution and their laboratory
experiment, although the migration of the interface is ignored in their model. For
similar configuration (solar pond problem), Zangrando & Fernando (1991) introduced
the effects of migrating interface due to entrainment through interfaces, and found
an equilibrium state. This entrainment–detrainment equilibrium is confirmed by data
from laboratory experiments.

The aim of the present study is to clarify the dynamics of the evolution of layers in
multi-layer configuration by constructing a model that includes both migration and
dissipation of interfaces. In § 2, a brief description of the direct numerical model used
for the diffusive convection in multi-layered stratification is made and the temporal
behaviour of the layer is presented. In § 3, the structure of the multi-layered convection
is analysed, and several qualitative rules on the movement of layer interfaces are
derived. In § 4, a mechanistic model that describes the evolution of layers is proposed.
The model will be shown to reproduce the merging processes found in the DNS in
a satisfactory manner. A discussion of the results is presented in § 5. Summary and
conclusions are given in § 6.

2. Numerical experiment
2.1. Numerical model

In the present paper, the results of DNS as described in Noguchi & Niino (2010) is
analysed. We will here give a brief description of the DNS. Readers are referred to
Noguchi and Niino for their details.

The numerical model solves governing equations for two-dimensional incom-
pressible convective motions due to double-diffusive effect. The fluid is initially at
rest and is diffusively stratified with faster and slower diffusing component T and S,
respectively. The gradient ratio

γ = − ∂ρT /∂z

∂ρS/∂z

is positive and less than 1, where ρT and ρS denote contributions of T and S to the
basic density field, respectively, and −∂ρS/∂z > ∂ρT /∂z > 0. After a suitable scaling,
the governing equations in non-dimensional form are given by(

∂

∂t
− Pr∇2

)
∇2ψ = −J (ψ, ∇2ψ) − Pr

(
∂T

∂x
− 1

γ

∂S

∂x

)
, (2.1)(

∂

∂t
− ∇2

)
T = −J (ψ, T ) − ∂ψ

∂x
, (2.2)(

∂

∂t
− τ∇2

)
S = −J (ψ, S) − ∂ψ

∂x
, (2.3)
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Figure 1. Time-height cross-section of horizontally averaged vertical density gradient for
γ = 0.88. The time interval between 800 and 2400 is shown. The multi-layered convective
motions begin at t ∼ 1000.

where ψ is the stream function and J (a, b) is Jacobian. Note that the length is scaled
by an intrinsic length scale δ = |gαTz/κT ν|−1/4, where g is the gravity acceleration,
α the coefficient of contraction due to component T , Tz the basic vertical gradient
of T , κT the diffusivity of component T and ν the kinematic viscosity. The non-
dimensional parameters that appear in (2.1)–(2.3) are Prandtl number Pr = ν/κT , the
diffusivity ratio τ = κS/κT and γ , where κS is the diffusivity of component S. An
aqueous salt-heat system (Pr = 7 and τ = 0.01) is considered in the present study.

The calculation domain is 632δ × 632δ and periodic boundary conditions are
imposed on both vertical and horizontal boundaries. White noise of T with tiny
amplitude are used as initial disturbance. In this paper we will examine the cases of
γ = 0.88 and 0.89, which are linearly unstable to diffusive convection (see Noguchi &
Niino 2010 for linear stability analysis).

2.2. Simulated evolution of layers

Figure 1 shows the time evolution of vertical density gradient, which is averaged
horizontally over the whole calculation domain for γ =0.88 after t = 800 when the
layer structure is established. Eighteen alternations of large and small vertical density
gradients are seen at t ∼ 800. Convective motions commence at t ∼ 1000 and the
density gradient within the layer becomes very small due to their efficient mixing.
Once formed, layers increase their thickness by repeating mergings with adjacent
layers and result in four layers with somewhat uneven thickness by t ∼ 2400.

The thickness of the interfaces that separate the convective mixed layers is about 10
at t ∼ 800. It then slowly increases with time and becomes 15 at t ∼ 2400. Although
the interface thickness shown in the figure may be influenced by the horizontal
inhomogeneity of the interface at later time, the change of the interface thickness
with time is much smaller than that of layer thickness. The density gradient at the
interface also seems to increase with time.

When γ is increased to 0.89, layers grow much quicker since this case is
more supercritical (figure 2). About 30 layers exist at t = 150. These layers repeat
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Figure 2. Time-height cross-section of horizontally averaged vertical density gradient for
γ = 0.89. The multi-layered convective motions begin at t ∼ 150.
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Figure 3. The two modes of layer merging: (a) layer vanishing mode, (b) interface
vanishing mode.

mergings much more quickly than they do for γ = 0.88 and leave only 3 layers by
t ∼ 1600.

Both figures 1 and 2 show that there are two modes of layer merging: a layer
vanishing mode and a interface vanishing mode. Figure 3 illustrates these modes
schematically. In the layer vanishing mode (figure 3a), a layer gradually decreases
its thickness and finally vanishes. If one looks at the interfaces, this mode appears
as the merging of two adjacent interfaces. In the interface vanishing mode, on the
other hand, density difference at the interface decreases with time and finally vanishes
(figure 3b), so that the interface disappears. Figures 1 and 2 show that these two
modes are not exclusive of each other and mergings in general take place in some
mixed way between the two extreme modes.
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Figure 4. Time-height cross-section of square root of horizontally averaged kinetic energy
density, for γ = 0.89. Note that the colour shading is rescaled by a factor of 2 at t =800. Layer
interfaces are indicated by dotted lines.

3. Physical interpretation of layer merging
In this section, we examine several statistical quantities associated with the simulated
convective motions to clarify the possible factors that govern the migration and
vanishing of interfaces. For this purpose, the following assumptions are made: (a)
The migration and vanishing of the interfaces are controlled by convective motions
within the mixed layer, and (b) convective motions are statistically homogeneous
throughout each layer.

3.1. Kinetic energy difference

First, we examine the kinetic energy. Figure 4 shows the time-height cross-section
of square root of horizontally averaged kinetic energy density, (u2 + w2)1/2, where u

and w are horizontal and vertical velocities, respectively, and the overbar denotes
the horizontal average over the calculation domain. Several empirical rules can be
deduced from this figure:

(a) Kinetic energy at the interfaces is always very small. This implies that the
motion is strongly suppressed by the sharp stable density gradient there.

(b) The migration velocity of the interfaces is typically about 10 times as small as
that of the fluid motion within the layers.

(c) Motions within the layers become vigorous as the layer thickness increases.
(d) An interface moves from the layer of larger kinetic energy towards that of

smaller kinetic energy.
The empirical rule (d) can be explained qualitatively in terms of competition of

turbulent entrainment from both sides of the interface (figure 5): From either side
of an interface, turbulent convective eddies try to entrain fluid from the other side
of the interface. If the kinetic energy on one side of the interface is different from that
on the other side, the layer with larger kinetic energy entrains more fluid than the
other layer does. To satisfy the mass conservation, the interface must move towards
the layer of smaller kinetic energy.
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Figure 5. Schematics of the relation between the kinetic energy distribution and the change
of the layer thickness: (a) layer vanishing mode, (b) interface vanishing mode. Grey scale
denotes the magnitude of kinetic energy averaged within a layer.

For the layer vanishing mode (figure 5a), the fluid inside the thinner layer, which
has smaller kinetic energy according to rule (c), is entrained by the thicker layer and
eventually disappears. The generality of rule (c) is also seen in the interface vanishing
mode (figure 5b). After an interface vanishes, the layer thickness doubles. This results
in an increase of kinetic energy, and consequently an increase of entrainment. Their
dependencies on the layer thickness d can be explained by the fact that a Rayleigh
number defined for each layer is expressed as

Ra =
gαTzd

4

κT ν
=

d4

δ4

and that in general velocity of convective motion is a monotonic increasing function
of Ra.

3.2. Skewness of vertical velocity

For the interface vanishing mode, a vertical asymmetry of the layer structure appears
to be important. Let us look at figures 1 and 2, for example. When an interface
disappears, the density gap of the interface weakens while the density gaps across
the neighbouring interfaces show significant increase. This is schematically shown
in figure 5(b). The vertical asymmetry of convective motions can be detected by
calculating the skewness of vertical velocity Sw defined by

Sw ≡ w3

w2
3/2

. (3.1)
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Figure 6. Time-height cross-section of the skewness of w, for γ = 0.89.

Before starting the analysis of the present case, let us briefly review the characteristics
of Sw in the convective layer, according to Moeng & Rotunno (1990). They performed
DNS of convections in a fluid layer with symmetric and asymmetric thermal forcing
at the boundaries. When the forcing is symmetric, which means the fluid is cooled
from top and heated from bottom at the same rate, Sw is antisymmetric with respect
to the middle height of the layer, and has a positive peak near the top of the
layer and a negative peak near the bottom. When the forcing is asymmetric, on the
other hand, which means heating is imposed only at the bottom, Sw is positive at
all height and has a peak near the top. This can be interpreted in terms of plume
activities as follows: When the forcing is symmetric, upward and downward plumes
emerges with statistically equal strength and frequency. The upward (downward)
plume accelerated by the positive (negative) buoyancy in the plumes becomes largest
near the top (bottom). When the forcing is only at the bottom, on the other hand,
stronger upward plumes occupy small fraction of the layer, and weaker compensating
downward plumes the rest. Thus, Sw is positive everywhere.

Figure 6 shows the time evolution of Sw in the present system. Here we focus on
the behaviour of the skewness before the interfaces disappear (e.g. z ∼ 120 and 570
at t ∼ 1000, and z ∼ 350 at t ∼ 1200). Well before the interfaces start to disappear, the
skewness in the adjacent layers is antisymmetric with respect to the middle height
of the layers. When the interfaces start to weaken, however, the skewness in the
upper (lower) layer starts to be dominated by negative (positive) values. This shows
that downward (upward) plumes start to dominate in the upper (lower) layer. These
plumes, trying to penetrate the interface, entrain actively the fluid on the other side
and eventually eliminate the density contrast between the two layers. This process is
schematically illustrated in figure 7.

4. Asymmetric entrainment model
Based on the observation presented in the previous section, we propose here a
mechanistic model of the evolution of layers. In this model we regard each convective
layer bounded by two diffusive interfaces as a discrete element, and the whole
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Figure 7. Schematic of the relation between the skewness of w and the plumes during
the interface vanishing.
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Figure 8. Schematic illustration of the asymmetric entrainment model. T is the temperature
of layer, � the temperature difference at the interface, L the thickness of layer, U the velocity
of plumes and u the entrainment velocity. The subscripts denote the number of layer, and the
superscripts + and − for the values at the top and bottom of the layer, respectively.

stack of convective layers as an one-dimensional array of such elements, in which
each element interacts only with its nearest neighbours. The characteristics of the
interaction is assumed to depend only on local properties. Figure 8 illustrates the
present mechanistic model schematically.

The assumptions made in the model are the followings:
(a) Each layer is well mixed by turbulent convections, so that both temperature

and salinity are homogeneous throughout the layer.
(b) Density difference between layers is proportional to their temperature difference.

(Therefore salinity difference is also proportional to temperature difference.)
(c) Convective plumes have density deficit (or surplus) proportional to the

temperature difference at the interface from which they originate.
(d) Plumes are accelerated at a constant buoyancy prescribed by the density deficit

(or surplus) during their ascent (descent). Viscous retardation is ignored.
(e) Plumes ascent or descent without mixing with ambient fluid.
(f) Plumes impinging into an interface entrain fluid from the other side through

the interface.
(g) Aspect ratio of the convective plumes is of the order of unity, so that the

vertical and horizontal velocity scales are similar.
Let us express these assumptions in a mathematical form. Consider a plume which

originates from the bottom of the ith layer (figure 8). The ith layer has a thickness



Multi-layered diffusive convection. Part 2 473

Li and temperature Ti , respectively. An integration of the buoyancy acceleration over
the layer thickness gives the final velocity of the ascending plume near the top of the
layer,

U+
i = A(�−

i Li)
1/2, (4.1)

and that of descending plume near the bottom of the layer,

U−
i = A(�+

i Li)
1/2, (4.2)

where the superscripts + and − stand for the values at the top and bottom of the
layer, respectively. A is a constant coefficient, �+

i = Ti − Ti+1 and �−
i = Ti−1 − Ti . The

entrainment velocity ui , which is defined as the volume entrainment rate, is assumed
to be given by the plume impingement velocity as

u+
i = B

(U+
i )3

�+
i Li

(4.3)

and

u−
i = B

(U−
i )3

�−
i Li

, (4.4)

where B is a coefficient of the entrainment efficiency and is assumed to be a constant.
Note that this equation has a similar form as Turner’s relation based on Richardson
number Ri (Turner 1965),

u

U
∼ Ri−1 ∼ U 2

� · L. (4.5)

Substituting (4.1) into (4.3), one obtains

u+
i = A3B

(�−
i )3/2L1/2

i

�+
i

(4.6)

and similarly,

u−
i = A3B

(�+
i )3/2L1/2

i

�−
i

. (4.7)

Under these assumptions, the conservation laws for mass and heat for ith layer,

dLi

dt
= u+

i + u−
i − u+

i−1 − u−
i+1, (4.8)

d(LiTi)

dt
= u+

i Ti+1 + u−
i Ti−1 − u+

i−1Ti − u−
i+1Ti, (4.9)

can be rewritten by use of (4.6) and (4.7), as

dLi

dt
=

[
(�−

i )3/2L
1/2
i − (�+

i+1)
3/2L

1/2
i+1

�+
i

+
(�+

i )3/2L1/2
i − (�−

i−1)
3/2L

1/2
i−1

�−
i

]
, (4.10)

dTi

dt
=

[
−(�−

i )3/2 + (�+
i )3/2

]
(Li)

−1/2, (4.11)

where dt has been rescaled to accommodate the factor of A3B , and the relations
�+

i−1 = �−
i and �−

i+1 = �+
i has been used. Now, given an initial condition, we can

calculate the evolution of the layers using (4.10) and (4.11). The present model will be
henceforth referred to as asymmetric entrainment model. In the following subsections,
we will demonstrate the performance of the model for two simple configurations.
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Figure 9. A periodic two-layer configuration. Solid circles denote the boundary of a period.

4.1. Periodic two-layer system

The first example we consider is the simplest configuration in which a two-layer
system is repeated periodically (figure 9). Let the temperature difference and depth
for one cycle of the two-layer system be unity. If the temperature and depth of
the lower layer are denoted by T1 and L1, then those of the upper layer are given
by T2 and L2 = 1 − L1, respectively. For this configuration, (4.10) and (4.11) of the
asymmetric entrainment model are reduced to

dL1

dt
=

[
(T1 − T2)

3/2

T2 − T1 + 1
+

(T2 − T1 + 1)3/2

T1 − T2

] (
L

1/2
1 − L

1/2
2

)
(4.12)

and

dT1

dt
=

[
−(T2 − T1 + 1)3/2 + (T1 − T2)

3/2
]
(L1)

−1/2, (4.13)

dT2

dt
=

[
−(T1 − T2)

3/2 + (T2 − T1 + 1)3/2
]
(L2)

−1/2. (4.14)

If new variables defined by

� = T1 − T2, (4.15)

L = L1 (4.16)

are introduced, (4.12)–(4.14) are further reduced to

dL

dt
=

[
�3/2

1 − �
+

(1 − �)3/2

�

] (
L1/2 − (1 − L)1/2

)
, (4.17)

d�

dt
=

[
�3/2 − (1 − �)3/2

] (
L−1/2 + (1 − L)−1/2

)
. (4.18)

Equations (4.17)–(4.18) constitutes a two-dimensional dynamical system. When an
initial condition is given for L and �, we can calculate the time evolution of the
two-layer system based on (4.17)–(4.18). Since these equations are nonlinear, however,
we need to solve them numerically.

Figure 10 shows the evolution of � and L on the phase plane (�, L). The open
circle at the centre designates the source point and the four solid circle at the corners
the sink points. Note that only the point (�, L) = (1/2, 1/2) is the steady-state solution
of (4.17)–(4.18), but it is unstable to infinitesimal perturbations. As (4.17)–(4.18) are
defined only in the interior of the phase plane, the arrows on the boundary �= 0, 1/2
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Figure 10. Time evolution of periodic two-layer system (see (4.17) and (4.18)) plotted on the
phase plane (�,L). The open circle at the centre denotes source point and the four solid
circles at the corners denote sink points. The dashed orbit is for the later explanation.
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Figure 11. The target events for testing the applicability of the asymmetric entrainment
model: a–d the interface vanishing mode, and e–f the layer vanishing mode. The background
is the same as figure 2.

and L = 0, 1 are drawn in the asymptotic sense: a state close to boundary evolves
towards the direction of the arrow.

When L (=L1) is greater than 1/2, it increases with time. Eventually layer 1
fills up the whole layer and layer 2 vanishes. When L is less than 1/2, on the
other hand, it decreases with time and layer 1 eventually vanishes. These behaviours
correspond to the layer vanishing mode. Similarly, when the temperature difference
� between layers 1 and 2 is greater than 1/2, it increases with time and eventually
the temperature difference at the top of layer 1 vanishes, while when � is less than
1/2, the temperature difference at the bottom of layer 1 vanishes. This corresponds
to the interface vanishing mode.

Let us apply the solution in the two-layer system to the interface vanishing event in
the DNS. For the four events of interface vanishing shown in figure 11, their scaled
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Figure 12. Time evolution of temperature difference at the interface, during the four events
of interface vanishing as shown in figure 11. Temperature differences are normalized by their
value at 200 non-dimensional time before the vanishings of interfaces. The solid curve shows
the numerical solution of the periodic two-layer model. Fitting parameter is A3B =3.3 × 10−3.
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Figure 13. A periodic three-layer configuration. Solid circles indicate the boundary
of a period.

time evolution of temperature difference across the interface is shown in figure 12. The
superposed curve shows the numerical solution of the periodic two-layer system with
the initial condition of (�, L) = ((1/2) − δ, 1/2), where δ is a small positive number,
so that the solution moves along the dashed orbit in figure 10. It should be noted
that � attains 0 within a finite time. Data from the DNS and the curve predicted
by the two-layer model are shown by matching the time at which � attains 0, and
by normalizing the temperature difference by the value at 200 non-dimensional time
before the vanishing of interface. A least square fitting of the theoretical curve to
the data points gives A3B =3.3 × 10−3, which is the normalization factor of the time
scale in (4.10) and (4.11). The agreement between the theory and the DNS is very
satisfactory. The departure of � from the initial value grows almost exponentially
with time, and eventually � vanishes. Note that the fluctuations of the data points
in the DNS after the vanishing of � is caused by the passage of plumes through the
height of the disappeared interface.

4.2. Periodic three-layer system

Next, we proceed to a periodic three-layer configuration (figure 13). In such a
configuration, at least four degrees of freedom are needed to describe the evolution
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Figure 14. Time evolution of the periodic three-layer system (see (4.19) and (4.20)) plotted
on the phase plane (�,L). The open circle at (�,L) = (1/3, 1/3) denotes the source point and
the thick lines on the sides �= 1/2 and L = 0 denote the sink. Note that the arrows on the
thin lines �= 0, 1/3 and L = 0, 1 are drawn in the asymptotic sense: a point close to each line
moves to the direction of the arrow. For the explanation of the dashed orbit that terminates
at (1/4, 0), see the text.

of the system and this complicates the analysis. To keep the analysis simple, an
additional symmetric constraint is imposed: The top and bottom layers always
have the same depth and the temperature differences at the top and the bottom
interfaces of the middle layer are equal. This constraint reduces the degree of freedom
to two.

Again let the temperature difference and depth for one cycle of the three-layer
system be unity. When the temperature and depth of the middle layer are denoted
by T and L, respectively, the temperature of the upper and lower layers, under the
constraints mentioned above, are given by T − �, T + �, respectively, and the depth
of the upper and lower layers by (1 − L)/2, where � is the temperature difference
across the interfaces at the top and bottom of the middle layer.

For this configuration, (4.10) and (4.11) are reduced to

dL

dt
= 2

[
�1/2L1/2 − (1 − 2�)3/2

�

(
1 − L

2

)1/2
]

, (4.19)

d�

dt
=

[
�3/2 − (1 − 2�)3/2

](
1 − L

2

)−1/2

. (4.20)

Figure 14 gives the evolution of � and L on the phase plane (�, L). The open circle
at (�, L) = (1/3, 1/3) denotes the source point at which all the layers have equal
layer depths and temperature differences. The point is the only non-zero steady-
state solution of (4.17)–(4.18), but it is again unstable to infinitesimal perturbations.
The phase orbits terminate at the thick lines on the sides of the box, which are
the sink of the system. At the final point of solutions on the sink line at �= 0.5,
the temperature difference at the top of the upper layer (the bottom of the lower layer)
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Figure 15. Time evolution of layer thickness, before and after the two events of layer vanishing
shown in figure 11. Layer thickness is normalized by their value at 150 non-dimensional time
before the merging. The solid curve shows the numerical solution of periodic three layer system
(see the text for conditions). The fitting parameter A3B is the same as in figure 12.

vanishes, and on the sink line at L =0 the thickness of the middle layer vanishes.
In both cases, the system shifts to the two-layer configuration, so that the further
evolution can be calculated by means of the periodic two-layer system described in
the previous subsection. It is also noted that unlike the solution of the two-layer
system, the change in the layer thickness is not always monotonic in the three-layer
system.

When the temperature difference � at the top and the bottom of the middle layer
is less than 1/3, � decreases with time and at the same time the layer thickness L

vanishes. This corresponds to the layer vanishing mode. On the other hand, when �

is greater than 1/3, � increases with time until the interface at the top of the upper
layer (which is also the interface at the bottom of the lower layer, due to periodicity)
disappears, which corresponds to the interface vanishing mode.

Let us compare a solution of the three-layer system with the results of the DNS.
Figure 15 shows the time evolution of layer thickness during the two events of layer
vanishing as shown in figure 11. Layer thickness observed at various time in the DNS
are shown by marks with a theoretical curve obtained from the three-layer model,
where the layer thickness is normalized by the value at 150 non-dimensional time
before the vanishing. The value of A3B to scale the time is the same as that used in
the periodic two-layer system. This demonstrates the universality of the model. The
lack of points near t = 0 is due to difficulties in a precise determination of L: As
L becomes small, the fractional change of the thickness becomes large due to the
fluctuation of the interface.

Some preliminary calculations show that the time rate of change of L varies
substantially from orbit to orbit in the neighbourhood of �= 0. The curve shown
in figure 15 corresponds to the orbit shown by the dashed curve in figure 14. To
obtain the orbit with the final point of (L, �) = (0, 1/4), (4.19) and (4.20) is integrated
in reverse direction from the point (L, �) = (10−3, 1/4) to the neighbourhood of the
source point. The final point (L, �) = (0, 1/4) corresponds to a two-layer system of
equal thickness and temperature difference. This corresponds to the final state in the
two layer-vanishing events in the DNS (figure 11, modes e and f).
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5. Discussion
The asymmetric entrainment model proposed in this paper has been shown to
successfully reproduce the results of the DNS. This indicates that the essential
aspect of the merging event in layers driven by diffusive convection can be
reasonably understood within the framework of a simple one-dimensional discrete
model.

According to the results of the asymmetric entrainment model as well as those of
the DNS, the layer merging is an essential and inevitable feature of the multi-layered
convective system. In the periodic two-layer example, the equilibrium is attained only
when the two layers are exactly equivalent to each other, but this state is unstable to
infinitesimal disturbances.

The results of the entrainment model in periodic two- and three-layer configurations
suggest that layers are destined to merge with its neighbour, although this is not
proved in more general situation. If it is true, once the first round of merging process
is completed, the geometry of the problem become almost similar to the initial state
before the merging, except that the vertical scale is now doubled. Moreover, the time
evolutions of � and L observed at the different time and location in the DNS show a
surprising similarity if the time is shifted and the thickness is scaled properly (figures
12 and 15). These facts demonstrate that the evolution of multi-layered convective
system is likely to be self-similar and thus the layers are expected to evolve perpetually
with time.

It is also noted that the present model assumes that the plumes are driven mainly
by forcing of faster diffusing component (e.g. temperature in heat-salt system), and
the diffusive flux of slower diffusing component is ignored. This may be justified for
a heat-salt system for which τ = 10−2, but may not for a sugar–salt system for which
τ = 1/3.

If the dynamics considered in the present layer model includes all the important
physics contained in the DNS, one would expect that no layer splitting event is likely
to occur in a multi-layered diffusive convection. In fact it is not possible for a new
layer to form in the present model: Suppose a thin layer of thickness L is produced
between preexisting layers through layer splitting. Entrainment caused by this layer
would be much weaker than entrainment from adjacent preexisting layers. Thus the
new layer would reduce its thickness and would be eventually absorbed into one of
the adjacent layers.

Furthermore, our model suggests that there seems to be no stable steady
configuration of layers. Huppert (1971) found that a three layer system in which
a thin layer is placed in between two semi-infinite stratified layers can be steady
or oscillatory, while Zangrando & Fernando (1991) found an equilibrium state of a
single convective layer topped with an semi-infinite stratified layer. However, under
the present multi-layer configuration in which stratified layer is absent, the layers does
not seem to have a steady state solution which is stable to infinitesimal perturbation.

In the DNS, the layers merge successively and eventually one deep layer fills the
whole vertical span of the calculation domain. If the vertical size of the calculation
domain would be infinite, this experiment would yield a layer with an infinite depth
after infinite time. According to field observations in oceans, however, the vertical scale
of oceanic staircases seems to be less than a certain value. Thus, in the oceans there
must be some other mechanisms that limit the growth of layers, such as horizontal
advection of layer, breaking of internal gravity waves at the interface (Stamp et al.
1998), or some kind of two- or three-dimensional process which are not incorporated
either in the present DNS or in the one-dimensional model.
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6. Summary and conclusions
Evolution of layers in an unbounded diffusively stratified two-component fluid is
studied by means of a DNS and an analytical model. The DNS shows that the layers
grow by repeating merging with the neighbouring layers. It is also found that there
are two modes of merging: the layer vanishing mode and the interface vanishing
mode.

A statistical analysis based on kinetic energy and skewness of vertical velocity
gives the following empirical rules on the behaviour of the layers: (i) an interface
moves from the layer with larger kinetic energy to that with smaller kinetic energy;
(ii) when an interface starts to weaken, the skewness in the upper (lower) layer
starts to be dominated by negative (positive) values, which indicates that upward
(downward) plumes become dominant. These rules suggest that the vanishing of
layers and interfaces are caused by turbulent entrainment associated with plumes
impinging on the interfaces.

Based on the above analysis, an asymmetric entrainment model is proposed. The
model consists of one-dimensional array of layers each of which interacts with its
nearest neighbours through entrainment at the interfaces. The entrainment is assumed
to be caused by impingements of thermally driven convective plumes onto the interface
and to obey a simplified convective entrainment law. The asymmetric entrainment
model applied to two simple configuration of layers such as periodic two-layer and
three-layer systems turns out to reproduce the two modes of mergers rather nicely.
Furthermore, the evolutions of the layer vanishing modes and the interface vanishing
modes obtained in the DNS prove to be well described by the asymmetric entrainment
model.

The present asymmetric entrainment model assumes that the diffusivity ratio τ is
very small. It is of interest to examine the effect of τ on the behaviour of the layers by
means of a DNS and to extend the asymmetric entrainment model to a more general
case in which τ is not very small. This is left for a future study.
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